Терменвокс по-русски

Мы постоянно добавляем новые материалы на сайт и мы постоянно нуждаемся в вашей помощи.

Пожалуйста, помогите нам с переводом материалов на русский язык.

Переведите пару абзацев >>

Новое о терменвоксе

В. Нечаев. Журнал: «В помощь радиолюбителю», №44, 1974 год, стр. 36-46

Терменвокс – первый электронный музыкальный инструмент, созданный у нас в стране более 50 лет назад, в 1921 году, конструктором Львом Сергеевичем Терменом. Год создания терменвокса принято считать годом рождения электронной музыки. За прошедшие с тех пор годы творческими усилиями советских конструкторов и энтузиастов ЭМИ, таких, как А. А. Володин, И. Д. Симонов, С. Г. Корсунский, А. А. Иванов, Е. А. Прохоров, В. И. Волошин и многих других, был создан не один десяток отечественных образцов разнообразных одноголосных и многоголосных ЭМИ. Но, несмотря на столь быстрое развитие электромузыки, терменвокс не потерял своего значения и в наши дни, а по красоте звучания и исключительной художественной выразительности мог бы поспорить со многими современными ЭМИ. Будучи одним из самых простых, а значит, и одним из самых дешевых инструментов, терменвокс мог бы получить самое широкое распространение. Этого, однако, не случилось отчасти из-за тех недостатков, которыми обладает инструмент и которые заложены в самом принципе построения его электрической схемы – принципе биений высокочастотных колебаний. Как известно, задающий генератор терменвокса состоит из двух высокочастотных генераторов: опорного с неизменной частотой и перестраиваемого, частота которого меняется рукой исполнителя. Сигналы обоих ге­нераторов поступают на смеситель, где выделяется сигнал разностной звуковой частоты. Временная нестабильность частоты высокочастотных LC генераторов терменвокса вполне допустима для задающих генераторов ЭМИ. Однако в результате биений эта абсолютная нестабильность частоты переносится в масштабе 1:1 на устойчивость результирующей звуковой частоты. Таким образом, чем выше частота высокочастотных генераторов и чем ниже частота биений, тем больше относительная нестабильность высоты тона в низкочастотном регистре терменвокса.

Произведем количественную оценку этой нестабильности. Пусть частота опорного высокочастотного генератора согласно рекомендациям, приведенным в литературе (1,4), составляет 130 кГц, а частота другого высокочастотного генератора перестраивается рукой в пределах 130,1–134 кГц. Пусть далее временная нестабильность частоты этих генераторов при комнатной температуре будет ±10-4, что в абсолютных единицах составит ±13 Гц.

Тогда относительная частотная нестабильность строя терменвокса определится величинами, приведенными в табл. 1.

Таблица 1

Частота терменвокса, Гц

Относительная нестабильность
строя терменвокса, %

65

20

260

5

650

2

1300

1

3900

0,33

Если учесть, что минимальное изменение высоты тона, воспринимаемое человеческим ухом, составляет приблизительно 6 центов или ±0,36%, становится очевидным, что использовать терменвокс на частотах ниже 1300 Гц не представляется возможным, так как рука исполнителя не успеет отреагировать на такое большое изменение высоты тона. Понижение частоты высокочастотных генераторов до 65 кГц понижает граничную частоту в два раза, но при этом значительно ухудшаются условия фильтрации низких частот.

Заметный выигрыш в стабилизации строя терменвокса дает применение высокочастотных кварцевых генераторов. Действительно стабильность частоты таких генераторов равна ±10-6. Допустимая перестройка частоты для обычных схем кварцевых генераторов составляет ±0,1%, а при полной компенсации емкости кварцедержателя (6) может доходить до ±1%. При этом стабильность частоты генератора понижается на порядок и составляет уже ±10-5. Очевидно, что в обоих случаях абсолютная неста­бильность частоты кварцевых генераторов будет одинакова, так как для перекрытия того же звукового диапазона частота кварцевого резонатора для первого случая должна быть выбрана в 10 раз большей. Пусть нужно перекрыть звуковой диапазон в 4 кГц. Легко определить, что при перестройке частоты кварцевого генератора в пределах ±1% его резонансная частота должна составлять 400 кГц.

При относительной нестабильности частоты генератора, равной ±10-5, ее абсолютное значение составит 4 Гц, что на звуковой частоте 400 Гц будет соответствовать нестабильности строя терменвокса ±1%. Как видим, применение высокочастотных кварцевых генераторов дает выигрыш в 3,3 раза по отношению к частоте LC генераторов, равной 130 кГц, и в 1,65 раза – по отношению к частоте 65 кГц. Более существенного выигрыша от применения высокочастотных кварцевых генераторов получить не удается.


Рис. 1. Высокочастотный кварцевый генератор,
а – принципиальная схема; б – эквивалентная схема кварца

Перестраиваемый высокочастотный кварцевый генератор может быть построен по схеме, приведенной на рис. 1, а. Эквивалентная схема кварцевого резонатора изображена на рис. 1, б. Он представляет собой последовательный колебательный контур, образованный эквивалентной индуктивностью кварца Lкв, эквивалентной емкостью кварца Cкв, эквивалентным сопротивлением потерь rкв и зашунтированный паразитной емкостью кварцедержателя С0. Поскольку отношение С0/Скв выражается десятками, а то и сотнями единиц, становится понятным, почему так трудно перестроить частоту кварцевого генератора. Расширить диапазон перестройки можно только в случае компенсации емкости С0. Это достигается подключением параллельно емкости С0 дополнительной катушки индуктивности L0. Контур L0C0 настраивают точно на частоту кварцевого резонатора. Тогда емкость кварце-держателя компенсируется и параллельно контуру LквCквrкв остается подключенным только сопротивление потерь r0 контура L0C0. Для определения индуктивности катушки L0 необходимо предварительно измерить емкость С0.

Катушка L0 должна иметь подстроечный сердечник, с помощью которого контур L0C0 настраивается точно на частоту кварцевого резонатора. Момент резонанса характеризуется наибольшим расширением диапазона перестройки кварцевого генератора. Отклонение частоты в процессе настройки контролируется цифровым частотомером.

Частота кварцевого генератора во время игры на инструменте перестраивается рукой исполнителя, вносящей в антенный контур дополнительную емкость. При этом перестраивается контур L3C2, а значит, и частота генератора.

Катушки антенного контура L1L3 конструктивно могут быть выполнены согласно рекомендациям соответствующей литературы (1, 4, 8). Индуктивность катушки L0 зависит от емкости кварцедержателя С0. На рис. 1, а указана индуктивность L0 для емкости С0=10 пФ. В случае другого значения С0 необходимо пересчитать число витков катушки L0. Намоточные данные катушек L0, L4, L5 приведены в табл. 2.

При изготовлении катушек наматывают на 5% больше витков, чем указано в табл. 2, а точную подгонку индуктивности производят на RLC мосте, отматывая лишние витки.

Таблица 2

Обозначение по схеме

Число витков

Провод

Индуктивность, мкГ

Сердечник

L0

585

ПЭВ-1 0,1

16 000

СБ-5а

L4

31

ПЭВ-1 0,2

50

СБ-3а

L5

94

ПЭВ-1 0,2

460

СБ-3а

Поскольку метод биений не может обеспечить нужной стабильности строя терменвокса, пришлось искать другие пути реализации его схемы. После длительных поисков автору статьи, являющемуся поклонником этого замеча­тельного инструмента, по его мнению, удалось найти ме тод и технические средства для построения схемы терменвокса, свободного от перечисленных выше недостатков. Суть метода наглядно иллюстрируется структурной схемой, приведенной на рис. 2.


Рис. 2. Функциональная схема терменвокса.

1 – кварцевый ВЧ генератор; 2 – буферный каскад; 3 – антенный контур;
4 – выпрямитель; 5 – широкодиапазонный преобразователь; 6 – темброблок;
7 – манипулятор; 8 – педаль управления громкостью; 9 – усилитель НЧ;
10 – ревербератор; 11 – акустическая система

Поскольку все низкочастотные узлы терменвокса детально разработаны и описаны в литературе (1–5), здесь будет рассмотрена только частотозадающая часть инструмента, включая широкодиапазонный преобразователь (см. рис. 3).


Рис. 3. Принципиальная схема частотозадающих узлов терменвокса

Функции задающего генератора может выполнить любой кварцевый генератор. В построенном автором инструменте кварцевый генератор собран на транзисторе T1, включенном по схеме с общей базой. Режим транзистора T1 по постоянному току задается базовым делителем напряжения R1, R2. Конденсаторы C1, С2 фильтруют высокую частоту, а СЗ, С4 входят в контур L1C3C4, настроенный на первую гармонику кварцевого резонатора Пэ1. Для устранения влияния нагрузки на частоту и амплитуду кварцевого генератора служит буферный усилитель, выполненный на транзисторах Т2, ТЗ. Для увеличения входного сопротивления буферного усилителя в его первом каскаде используется полевой транзистор Т2. Нагрузкой усилителя служит последовательный колебательный контур L3C10, настроенный на первую гармонику кварцевого резонатора. Конденсатор С5 – разделительный, С6 устраняет отрицательную обратную связь по току в первом каскаде усилителя, а конденсаторы С7, С8 образуют емкостной делитель, через который с коллектора на эмиттер транзистора Т3 поступает напряжение положительной обратной связи, повышающей усиление второго каскада и улучшающей добротность контура L3C10. При сильной положительной обратной связи может возникнуть генерация. В этом случае необходимо уменьшить отношение емкостей конденсаторов C8/C7.

Режим усилителя по постоянному току задается делителем R4, R5. Чтобы напряжение высокой частоты не попадало на источник питания, в коллекторные цепи транзисторов Т2 и Т3 включен фильтр L2C1C9C11.

Чтобы способ игры на терменвоксе остался обычным, в схему введен антенный колебательный контур L4C12C13C14. В этот контур входит и емкость антенны, величина которой изменяется в зависимости от положения руки исполнителя. Для уменьшения влияния нагрузки на последовательный колебательный контур L3C10 отвод от катушки L3, к которому присоединяется антенный контур, делается от 1/5 части витков, считая от нижнего по схеме конца, а коэффициент трансформации (отношение W5/W4) выбран равным 0,2. Антенный контур настраивается таким образом, чтобы при максимальном удалении руки от антенны он был расстроен относительно частоты кварца. В этом случае амплитуда сигнала на катушке L5 близка к нулю. При приближении руки к антенне (или касании ее) антенный контур с помощью подстроечного конденсатора С13 должен быть точно настроен на частоту кварца. Амплитуда сигнала, снимаемого с катушки L5, должна быть при этом максимальной и рав­ной 10 В. Такая величина сигнала устанавливается выбором соответствующей добротности последовательного колебательного контура L3C10. При данной выходной амплитуде сигнала на катушку L4 надо подавать напряжение 50 В, а на катушке L3 при настройке в резонанс должно быть 250 В переменного напряжения высокой частоты. Получить такую амплитуду можно, имея добротность последовательного контура, равную 50. В этом случае на коллекторе транзистора Т3 должно быть напряжение 5 В, что вполне можно получить от двухкаскадного усилителя на транзисторах Т2 и Т3.

Таким образом, при воздействии руки исполнителя на антенну терменвокса частота высокочастотного задающего кварцевого генератора остается стабильной и неизменной, а перестраивается только антенный контур, в результате чего изменяется лишь амплитуда высокочастотного сигнала на катушке L5 от минимума, близкого к нулю, до 10 В. Стабильность этой амплитуды зависит от стабильности частоты и амплитуды кварцевого генератора и от стабильности параметров колебательных контуров.

Стабильность частоты кварца настолько высока, что этим фактором можно пренебречь. Параметры контуров также легко стабилизировать выбором соответствующего типа магнитопроводов катушек и стабильных конденсаторов. Для стабилизации амплитуды ВЧ сигнала задающий генератор терменвокса необходимо питать от стабилизированного источника питания напряжением 16 В или от малогабаритных аккумуляторов. Еще одним дестабилизирующим фактором является емкость антенны, зависящая от состояния атмосферы. Но этот фактор не является существенным, так как температура, давление и влажность воздуха в концертном зале не меняется мгновенно, и исполнитель в процессе игры всегда может внести рукой соответствующую коррекцию, а перед началом игры подстроить инструмент.

Для практического использования высокочастотного сигнала изменения его амплитуды на катушке L5 необходимо преобразовать в соответствующие изменения частоты. Для этой цели используется управляемый широкодиапазонный генератор звуковой частоты. Предварительно высокочастотный сигнал выпрямляется двухполупериодным выпрямителем, выполненным на диодах Д1, Д2. Нагрузкой выпрямителя служит резистор R10. Конденсаторы С15, С16 совместно с резистором R11 образуют фильтр низких частот.

Выпрямленное напряжение постоянного тока поступает на вход широкодиапазонного звукового генератора, частота которого изменяется пропорционально величине управляющего напряжения Uу. При изменении Uу в пределах от 0 до 10 В генератор перекрывает весь звуковой диапазон от 15 Гц до 15 кГц.

Зависимость частоты генератора от управляющего напряжения линейна, поэтому и воздушный «гриф» терменвокса имеет почти линейный характер. Некоторая нелинейность обусловлена амплитудной характеристикой антенного контура. Управляемый генератор собран на транзисторах Т4-Т6. Он представляет собой автоколебательный блокинг-генератор, в котором управление частотой осуществляется изменением постоянной времени разряда хронирующей емкости С17 с помощью транзистора Т4. Под воздействием меняющегося управляющего напряжения постоянного тока, приложенного к базе транзистора Т4, изменяется его проходное сопротивление, что влечет за собой соответствующее изменение частоты повторения импульсов. Так, при напряжении Uу, близком к нулю, транзистор Т4 почти закрыт и звуковая частота сигнала на выходе генератора равна 15 Гц. Когда напряжение Uу=Uу макс=10 В, частота генерато­ра становится максимальной и равной 15 кГц. Диоды Д5 и Д6 устраняют обратный выброс импульсов, а диод Д4 – отключает емкость С17 от входа блокинг-генератора на все время формирования периода повторения импульсов. Транзистор Т5 повышает чувствительность и стабильность генератора. Для стабилизации выходной амплитуды импульсов блокинг-генератора и ограничения тока транзистора Т6 использован параметрический стабилизатор, на резисторе R13 и стабилитроне Д3.

Звуковой генератор имеет два выхода. На выходе «Вых. 1» формируется короткий (6 мкс) импульс отрицательной полярности с амплитудой 2,7 В, а на выходе «Вых. 2» – импульс такой же длительности, но положительной полярности с амплитудой 7,5 В. Оба импульса могут быть использованы в темброблоке с целью получения противофазных сигналов, например, прямоугольной и треугольной формы, нужных для формирования тембра человеческого голоса. Сопротивление нагрузки для обоих выходов должно быть не менее 1 кОм.

В терменвоксе использованы резисторы МЛТ, конденсаторы C1, С2, С5, С6, С9, С15, С16, С19 – МБМ; С11, С18 – К50-6; С3, С4, С7, С8, С10, С14 – КСО группы Г; С12 – КД и С13 – подстроечный с воздушным диэлектриком. Диоды Д1, Д2 – Д9Е; Д3 – Д814А; Д4 – Д223Б; Д5, Д6 – Д220. Транзисторы Т1, Т3, Т5, Т6 – ГТ308Б со статическим коэффициентом усиления по току Вст = 50, транзистор Т2 – полевой, КП103М с крутизной характеристики не менее 2 мА/В, транзистор Т4 – КТ315Г со статическим коэффициентом усиления по току Bст = 70. Импульсный трансформатор – унифицированный И-87. Полярность включения его обмоток показана на принципиальной схеме (рис. 3). Намоточные данные контурных катушек приведены в табл. 3.

Таблица 3

Обозначение по схеме

Число витков

Провод

Индуктивность, мГ

Сердечник

Тип намотки

L1

248

ПЭЛШО 0,25

3,1

К32 × 20 × 6
М90НН-2

Рядовая

L2

1100

ПЭВ-2 0,1

103

К32 × 20 × 9
М1000НМЗ

Внавал

L3

248

ПЭЛШО 0,25

3,1

К32 × 20 × 6
М90НН-2

Рядовая

L4

3 × 735

ПЭЛШО 0,2

260

Стержень марки
150ВЧ-1

Универсаль

L5

2 × 220

ПЭЛШО 0,2

10,4

10 × 200 мм

Универсаль

Геометрические размеры катушек L4 и L5 и их взаимное расположение показаны на рис. 4. Индуктивность катушки L4 изменяется с помощью подстроечного сердечника. Для исключения влияния радиостанций длинноволнового диапазона на стабильность строя терменвокса частота кварцевого резонатора выбрана равной 90 кГц.

Низшая частота басового регистра инструмента с учетом допустимой относительной нестабильности строя, равной ±0,36%, и нестабильности кварцевого генератора равной ± 10-6, равна:

Fн = fкв × 10-6 / 0,36 % ,

где

Fн – низшая частота терменвокса, Гц;

fкв – частота кварцевого генератора, Гц.


Рис. 4. Конструкция катушек L4 и L5

Частота Fн согласно расчету равна 25 Гц. При нестабильности строя, равной ± 1 %, Fн=9 Гц. Таким образом, по сравнению с терменвоксом, построенным по принципу биений двух высокочастотных колебаний, содержащим LC генераторы с частотой возбуждения 130 кГц, предлагаемый инструмент дает выигрыш в стабильности строя терменвокса на нижнем регистре в 145 раз, а по сравнению с терменвоксом, содержащим кварцевые генераторы с резонансной частотой 400 кГц,– в 45 раз. Реальная стабильность строя будет несколько хуже за счет нестабильности амплитуды ВЧ сигнала при изменении температуры. Перед началом игры инструмент можно подстроить, внеся коррекцию на изменение температуры.

Литература:

  1. Корсунский С. Г., Симонов И. Д. «Электромузыкальные инструменты», М., Госэнергоиздат, 1957.
  2. Соломин В. К. «Конструирование электромузыкальных инструментов», М., Госэнергоиздат, 1958.
    скачать в DJVU
  3. Волошин В. И., Федорчук Л. И. «Электромузыкальные инструменты», М., «Энергия», 1971.
    скачать в DJVU
  4. Симонов И. Д., Шиванов А. Н. «Терменвокс», ж-л «Радио», 1964, № 10.
  5. Термен Л. С. «Физика и музыкальное искусство» М., «Знание», 1966.
  6. Априков Г. В. «Регулируемые усилители», М., «Энергия», 1969.
    скачать в DJVU
  7. Королев Л. «И снова терменвокс», ж-л «Радио», 1972, № 9.